Magnetic formwork system

 

In the production process of precast concrete components, precision control has always been a key problem. Traditional formwork systems have many problems in terms of dimensional deviation, component consistency and rework rate. Especially in mass production, these problems will be further amplified, seriously affecting production efficiency and product quality. However, with the emergence of magnetic formwork systems, this situation has been significantly improved. With its unique design and function, the magnetic formwork system has brought unprecedented precision improvement to precast concrete production and has become the "new favorite" of the construction industry.

 

Precise positioning and dimensional deviation control

The Precast Concrete Formwork Magnet uses strong magnetic force to firmly fix the formwork on the prefabricated platform. This magnetic connection method can ensure that the formwork remains stable during the concrete pouring process and will not be displaced by external force or vibration. Compared with traditional bolt or welding fixing methods, the installation and removal of magnetic formwork is simpler and faster, and at the same time avoids dimensional deviation caused by loose installation or welding deformation. In actual operation, workers can quickly adjust the position and angle of the formwork according to the design requirements of the prefabricated components to achieve precise positioning, thereby effectively controlling the dimensional deviation of the components and enabling the dimensional accuracy of the prefabricated components to reach higher standards.

 

Improved component consistency

When mass-producing precast concrete components, it is crucial to maintain component consistency. The Precast Concrete Magnetic Formwork, through its modular design and standardized magnetic connection parts, can ensure that the formwork system of each precast component has the same structure and size. This means that during the production process, each component can be cast and formed under the same formwork conditions, which greatly improves the consistency of the components. In addition, the magnetic formwork system can also flexibly combine and adjust the formwork modules according to the different shapes and sizes of precast components, achieving diversified production while maintaining high quality consistency.

 

Reduce rework rate

Since the magnetic formwork system can effectively control dimensional deviations and improve component consistency, the component failure rate caused by formwork problems in precast concrete production has been greatly reduced. During the use of traditional formwork systems, problems such as formwork deformation and loose connections are prone to occur. These problems often lead to quality problems such as cracks and dimensional discrepancies in precast components, which require rework. The magnetic formwork system reduces the occurrence of these problems, reduces the rework rate, and improves production efficiency through its stable magnetic connection and precise positioning function. In mass production, this not only saves time and cost, but also improves the market competitiveness of enterprises.

 

Ideal for mass production

Magnetic formwork systems are particularly suitable for mass production of precast concrete components. In mass production, production efficiency and product quality stability are the two aspects that companies pay most attention to. The rapid installation and removal function of the magnetic formwork system can significantly shorten the replacement time of the formwork and improve production efficiency. At the same time, its high precision and high consistency can ensure that each precast component meets the quality standards, reducing production interruptions and rework caused by quality problems. In addition, the magnetic formwork system has a long service life and can be reused, which reduces the replacement cost of the formwork. These advantages make the magnetic formwork system extremely cost-effective in mass precast concrete production.

 

concrete embedded magnets

 

Precast concrete magnets (also known as embedded magnets or concrete embedded magnets) are widely used in construction, industrial equipment, exhibitions and other fields to fix, hang or dock metal parts. Choosing the right precast concrete magnet requires comprehensive consideration of multiple technical indicators to ensure its performance, durability and safety. The following are some important influencing factors:

 

1. Magnet pulling force (adsorption force) The pulling force of the magnet is the core indicator, which directly determines its load-bearing capacity.

Things to note when purchasing:

Clear requirements: Determine the required pulling force according to the actual application scenario (such as hanging tools, fixed steel structures, exhibition props, etc.). Common specifications range from tens of kilograms to hundreds of kilograms.

Test standard: Magnet pulling force is usually marked as "vertical pulling force" or "shear force", and the test conditions (such as how thick the steel plate is in contact with) need to be confirmed.

Safety margin: It is recommended to choose a model with a pulling force 20%-30% higher than the actual demand to cope with dynamic loads or magnetic attenuation after long-term use.

 

2. Shell material

The magnet shell needs to have the dual functions of protecting the magnet and facilitating installation. Common materials include:

Stainless steel (such as 304/316): Strong corrosion resistance, suitable for humid or outdoor environments (such as swimming pools, coastal buildings).

Galvanized steel: High cost performance, but not as rust-proof as stainless steel, suitable for dry indoor environments.

Engineering plastics: Lightweight and insulating, but with low load-bearing capacity, mostly used for electronic equipment or temporary fixation.

Recommendation: Stainless steel shells are preferred, especially in humid, acidic and alkaline environments.

 

3. Rust prevention and sealing treatment

Prefabricated magnets are embedded in concrete for a long time, so rust prevention is crucial:

Surface treatment: Check whether it has been nickel-plated, epoxy-coated or passivated to resist alkaline corrosion of concrete.

Sealing design: High-quality magnets will use rubber rings or glue-filling technology to prevent moisture from penetrating into the magnet.

Weather resistance: For outdoor use, products with IP65 or above protection level must be selected.

 

4. Ease of installation and removal

Prefabricated magnets need to be embedded before concrete pouring, and the installation method affects the ease of construction:

Threaded hole design: allows the position to be adjusted with bolts later, suitable for scenarios that require flexibility.

Welded brackets or anchors: suitable for heavy-duty fixation to ensure that the magnets do not shift in the concrete.

Embedded vs. surface installation:

Embedded: The magnets are completely embedded in the concrete, with a flat surface, suitable for floor or wall applications.

Surface installation: The magnets are exposed, which is easy to replace, but may affect the appearance and safety.

Purchase advice: Confirm the thickness of the concrete pouring and ensure that the magnets are embedded deep enough (usually ≥50mm).

If later adjustment is required, choose models with threaded or removable designs.

 

5. Temperature and environmental adaptability

Different magnet materials have different temperature sensitivities:

NdFeB: The strongest magnetic force, but high temperature (>80°C) may cause demagnetization.

Ferrite: High temperature resistant (up to 250°C), but weak magnetic force.

AlNiCo: Good high temperature stability, but high cost.

Purchase suggestions:

Avoid using NdFeB in high temperature environments (such as workshops and boiler rooms), and use ferrite or AlNiCo magnets instead.

 

Other key considerations

Anti-vibration design: If used in vibrating equipment, the magnets need to have cushioning rubber or a locking mechanism.

Certifications and standards: Check for compliance with industry standards such as ISO 9001, CE or ASTM.

Supplier reputation: Choose a professional manufacturer like LSC to ensure material authenticity and after-sales service.

keyboard_arrow_up