With the continuous advancement of science and technology and the development of industrialization, chemical production has become an indispensable and important industry in modern society. During chemical production, maintaining a clean and safe production environment is particularly important. However, the presence of metallic iron often has a negative impact on the production process. To address this issue, fully automatic iron removers have emerged as a key piece of equipment in chemical production.

 

Fully automatic iron removerFully automatic iron remover

 

First, let's discuss the working principle of a fully automatic iron remover.

A fully automatic iron remover uses a high-strength magnetic source (such as a permanent magnet or electromagnetic coil) to generate a magnetic field, automatically attracting ferromagnetic impurities from the material. Its core advantages are:

Continuous operation: No downtime for cleaning is required, as automatic scraping and iron removal mechanisms ensure uninterrupted operation.

Intelligent identification: Combining metal sensors and a PLC control system, it accurately detects and separates ferrous impurities.

High adaptability: Suitable for a variety of material forms, including powders, granules, and liquids, and featuring corrosion- and high-temperature resistance, it meets the demands of specialized chemical environments.

 

Why fully automatic iron removers play such important roles in chemical production? The fundamental reason is this: Iron impurities in chemical raw materials can cause multiple problems:

Catalytic side reactions: Iron ions can catalyze unwanted chemical reactions, reducing product purity.

Equipment wear: Hard iron filings accelerate wear on equipment like pumps, pipes, and reactors, increasing maintenance costs.

Product contamination: Especially in the fine chemical industry (such as electronic-grade chemicals and pharmaceutical intermediates), trace amounts of iron impurities can render a product scrapped.

Safety risks: Friction between iron particles and equipment can generate sparks, potentially causing accidents in flammable and explosive environments.

 

While seemingly a minor step in the production process, fully automatic iron removers are crucial for ensuring product quality, cost control, and production safety. In today's increasingly competitive chemical industry, technological innovation that prioritizes every detail is crucial for enhancing a company's core competitiveness. This is reflected in the following aspects:

1. In plastic and rubber production, fully automatic iron removers remove iron impurities from raw materials, preventing black specks and streaks in finished products and enhancing product appearance and purity. They also reduce wear on precision components like screws and molds caused by iron filings, extending equipment life, reducing maintenance costs, and protecting processing equipment. They also eliminate sparks generated by friction between iron impurities and equipment, reducing the risk of explosions and ignitions. This is particularly crucial in the production of flammable polymers, ensuring production safety.

2. In the pesticide and coating industries, fully automatic iron removers prevent iron ions from catalyzing unwanted chemical reactions, preventing pesticide degradation, discoloration, skinning, and decreased stability, thereby ensuring stable product performance. Removing iron impurities reduces interference with pigment color development, ensuring vibrant and consistent color across batches of coatings and pesticide formulations. This helps products meet stringent impurity content standards in both domestic and international markets (such as EU REACH), breaking through trade barriers.

3. Regarding new energy materials, it can strictly control ferromagnetic impurities in cathode materials (such as lithium iron phosphate and ternary materials), preventing increased battery self-discharge, increased internal resistance, and capacity degradation, thereby improving battery energy density and cycle life. It also eliminates the risk of short circuits introduced by magnetic metal foreign matter, significantly improving battery safety and preventing thermal runaway.

 

Supplement:

👀After understanding the importance of a magnetic separator, choosing the right equipment is crucial.

Type How it works Features Applicable Scenarios
Drawer-type iron remover The material flows through the permanent magnetic rod, the iron chips are attracted by it, and the cylinder pulls the magnetic rod layer by layer to automatically discharge the iron. The structure is relatively simple and can work continuously without pausing feeding when discharging iron. Suitable for powder and granular materials, such as plastic granules, food raw materials, etc.
Rotary iron remover The rotating magnet generates a strong magnetic field, which continuously attracts iron and automatically removes impurities through the scraper. It has large processing capacity and high degree of automation, and is suitable for continuous production lines. Suitable for powder or granular materials with high flow rate and high iron content.
Pipeline iron remover It is directly integrated into the pipeline and uses magnetic force to absorb iron impurities in the flowing material in the pipeline. Easy to install, good sealing and space saving. Suitable for removing iron in pneumatic conveying or liquid pipelines, such as coatings, slurries, etc.

 

💡 Usage Recommendations

Proper Installation: Typically installed at the inlet/outlet or at the front/end of the production line.

Regular Maintenance: Clean the magnetic bar or surface of the magnet regularly according to the instructions to ensure optimal iron removal performance. Check the equipment for wear.

 

 

Magnetic Materials in Food Processing

In a food processing plant that pursues deliciousness and health, you may not think of "magnets" at the first time. However, these invisible magnetic field forces are indispensable key players in ensuring the safety of our dining tables and improving production efficiency. They are unknown, but they have a great responsibility - they are specifically designed to deal with those "uninvited guests" that may be mixed into food: metal impurities.

 

* Wide range of sources: Metal impurities may come from raw materials (such as harvester parts fragments and ore residues in grain), production equipment (such as screen wear, loose and falling mechanical parts), employee negligence (such as screws, washers), and even packaging materials.

* Huge harm:

Physical damage: Sharp metal fragments are a major threat to consumer safety and may cause damage to the mouth, esophagus, and even internal organs.

Equipment damage: Hard metal particles can seriously wear or even jam expensive crushers, grinders, pumps and valves and other key equipment, causing unexpected downtime and high repair costs.

Reputation and legal risks: Once products containing metal foreign matter enter the market, they will inevitably lead to consumer complaints, large-scale recalls, serious damage to brand reputation, and even face severe regulatory penalties and lawsuits.

 

The above factors are the stage where magnetic separators come into play. They use the magnetic field generated by powerful permanent magnets (such as neodymium iron boron) or electromagnets to accurately "capture" ferromagnetic metals (iron, steel) and some weakly magnetic metals (such as some stainless steel) at key points in the food processing process. The working principle is that when food materials flow through or approach a strong magnetic field area, the ferromagnetic metal impurities in them will be firmly adsorbed on the surface of the magnet by the magnetic force, while the pure food passes smoothly, achieving precise separation.

What types of magnetic separation equipment are used in the food industry?

There are several types of magnetic separation equipment commonly used in the food processing industry, including:

Plate magnets: These flat magnetic plates are most commonly found in conveyors or chutes. They are often used to remove metal contaminants from dry goods such as grains, seeds or pet food.

Grid magnets: Similar to plate magnets, grid magnets are also suitable for dry material applications. These magnetic separators are composed of multiple magnetic bars through which the material passes. The magnetic bars collect and remove iron impurities from the material. Grid magnets are available in a variety of designs to suit a variety of material types, such as flour, grain, sugar, and more.

Rotary magnets: These magnets are most effective for dry, sticky, difficult-to-flow products that have bridging issues, such as milk powder or sugar.

 In-line magnets: These types of magnetic separators include designs suitable for both dry and wet applications, as well as high-speed product lines, pump lines, and pneumatic conveying.

 

Magnetic Materials in Food ProcessingMagnetic Materials in Food Processing

 

Magnetic separation technology ensures safety: not only equipment, but also a system

* Comply with regulations and standards: HACCP (Hazard Analysis and Critical Control Points) system, ISO 22000, FSSC 22000 and other global food safety standards all list metal foreign matter control as a critical control point (CCP) or prerequisite program (PRP). High-performance magnetic separators are the basic hardware to meet these requirements.

* Equipment selection and verification: The magnetic strength, form and installation location must be scientifically selected based on material characteristics (dry/wet, particle size, flow rate), expected metal size and type. Equipment performance needs to be verified regularly (such as using standard test pieces).

* Strict maintenance procedures: This is the lifeline to ensure the continued effectiveness of magnetic separation equipment! Must establish and implement:

* Regular cleaning: Clean the metal impurities adsorbed on the surface of the magnet according to the plan (such as every shift, every day) to prevent accumulation from causing magnetic field shielding or re-mixing of impurities.

* Regular inspection: Check whether the magnet is damaged, whether the coating is intact (to prevent food contamination), and whether the magnetic force is attenuated (regularly use a gauss meter to test).

* Records and traceability: Detailed records of cleaning, inspection, and metal impurities found to ensure the process is traceable.

 

In the field of food processing, magnetic materials and their separation technology are by no means dispensable supporting roles. They are the cornerstone of building a food safety defense line and the guardian of efficient operation of the production line. Intercepting every potentially harmful metal impurity from the source is a manifestation of the modern food industry's responsibility for consumer health and a wise investment for companies to achieve sustainable development and win market trust.

Therefore, please pay attention to these "invisible guardians":

* Scientifically select applicable magnetic separation equipment.

* Strictly implement maintenance and cleaning procedures.

* Deeply integrate it into your food safety management system.

keyboard_arrow_up